Atomic environment classification of the rhombohedral "intermetallic" structure types

J. L. C. Daams and P. Villars*

Philips Research Laboratories, PO Box 80000, NL-5600 JA Eindhoven (Netherlands)

Abstract

In this paper we give a complete description of the geometrical atomic environments found in the rhombohedral intermetallic structure types. Our analysis of 195 structure types showed that 144 are possible, while the remaining 51 structure types have *e.g.* improbable interatomic distances or are excluded because they are oxides with no intermetallic compounds crystallizing in this structure type.

In addition, we observed that 14 atomic environment types are greatly preferred. Out of 6356 investigated point sets, 4482 (71%) belong to one of these 14 atomic environment types. Of the 1324 compounds crystallizing in one of the 144 structure types, 19% belong to a single-environment group (structures in which all atoms have the same type of environment), 15% combine two environment types, 25% have three environments, 34% have four environments and the rest (7%) have five or more environments. Our systematic and comprehensive analysis of the rhombohedral structure types verified all known relationships between these structure types but also revealed new non-trivial relationships.

1. Introduction

In a previous paper [1], which can be regarded as the start of a complete and systematic continuation of the studies started in refs. 2 and 3, we have already discussed the importance of the crystal structure of a compound for its physical and/or chemical behaviour. It is therefore essential that the structures given in the literature should be correct or that they should be checked for their geometrical correctness, as we did for the cubic intermetallic structure types in ref. 1. In this investigation we report the results of our geometrical analysis of the 195 rhombohedral "intermetallic" structure types as they are compiled in ref. 4.

In ref. 1 we also pointed out the importance of atomic environments (AEs) for chemical crystallography and classified the cubic structure types on the basis of the observed atomic environments in these structure types.

In Table 1 the 195 structure types of the rhombohedral "intermetallic" compounds are arranged alphabetically according to the formula and in Table 2 according to the Pearson symbol. The structure type hR16 Ga₇Rb is in ref. 4 wrongly classified as belonging to the hR16 Ga₃Pu type, but in our analysis it is added to the list

because it is a different structure type. For the convenience of the reader the structure types have been numbered, so a structure of interest can easily be traced throughout the tables.

After analysing all 195 structure types, we excluded from our results all oxides (in so far as they did not have intermetallic compounds crystallizing in them, *e.g.* $hR19 O_{12}Pr_7$), all p-element structures or combinations between them, *e.g.* $hR2 O_2$, all structure types which are filled up with interstitial atoms such as hydrogen or nitrogen, *e.g.* $hR20 H_2H0Ni_3$, and incompletely refined structure types, *e.g.* $hR7 Na_5Pb_2$ in which the positions of the Na atoms were not refined in the publication. We also excluded the structure types consisting mainly of boron, *e.g.* $hR133 B_{23}Cu$, because these boron-rich structures can be regarded as structures consisting mainly of clusters of boron atoms, as will be shown later on.

In Tables 1 and 2 the excluded structure types are marked with an E in the last column where we normally give the number of atomic environments realized in the structure type. In practically all the excluded structure types we observed that, mainly owing to partly occupied point sets, improbable interatomic distances are realized, either too short or too long. In our geometrical analysis we can at this moment only analyse crystal structure descriptions with fully occupied point sets in so far as the partly occupied point sets do not

^{*}Permanent address: Intermetallic Phases Data Bank, Postfach 15, CH-6354 Vitznau, Switzerland.

No.

TABLE 1. List of 195 rhombohedral "intermetallic" structure types ordered alphabetically; the structure type hR16 Ga₇Rb was added to the list during printing. The structure types marked with an E in the last column were after the analysis (see text) excluded from our classification

TABLE 1.	(continued)
----------	-------------

Pearson

symbol

Structure

type

No. of

point sets

No. of

AETs

eneru		ii chubbineation			*******				
No	Doorgon	Structuro	No. of	No. of	- 56	hR115	B ₂₃ Mn	18	E
INO.	symbol	time	no. 01	AFTe	58	NR / hR1/3	$B_{5}WO_{2}$	4	4 E
	symoor				- 59	hR145	$\mathbf{B}_{971}\mathbf{v}_2$ $\mathbf{B}_1\mathbf{N}_1\mathbf{N}_2\mathbf{Sr}$	20	
1	hR74	AgAsSa	4	2	60	hR14	B.P	3	7
2	hR14	AgaAsSa	3	2	61	hR110	B.Sc	18	2 E
2	hR15	AgaCraSta	6	Ē	62	hR119	B_{28} C	10	E
4	hR6	AgCrSe	4	2	63	hR110	$B_{25}Z_{II}$	19	E
	hR46	Ag.GeTe.	18	Ē	64	hR31	Ba NhS.	10	E
6	hR40 hR47	$A_{g} M_{g} Z_{n}$	15	2	65	hR12	B_2Ph_2	4	2
7	hR92 hR8	AgNb.S.	4	2	66	hR12	Be Nh		2
8	hRS	$\Delta \alpha S_{1}T_{2}$	4	2	67	hR12 hR10	Be Nh.	5	3
õ	hR44		7	Poly	68	hR11	Bi Ge Te	11	1
10	hR137	AIB	19	E	69	hR16	$Bi_2OC_3 I C_6$ BiMn.	4	3
10	hR21		5	Ē	70	hR7		2	л Б
12	hR113		17	Ē	70	hR7	Bi Se	4	1
12	hR115 hR7	ALC.	17	3	71	hR17	Bi Se	4	1
13	hR7 hP71	ALC-N	11	F	72	hR17 hR5	Bi Te	3	1
14	hR21 hR20	$A_{16}C_{3}N_{2}$	15	E	73	hRJ hRAA	C HeN Pb	3	E
15	hR168	$A_{1}C_{2}C_{4}$	60	E	74	hP22	C M n P r	6	E
10	hR100 hP26		0	2	75	LDQ	$C_{2}WIn_{17}I_{12}$	2	2 2
10	hR20	ALCUNI	9 Q	Poly	70	LD16	CN13 CSi	16	2
10	hR15 hP0	Al Cu Zn	0	1 Oly 1	79	LD62	CSI	10 62	4 E
20	hR20	ALHO	6	2	70	hR13	C Ti.	5	3
20	hR10		2	2	80	hR15 686	$C_5 \Pi_8$	3	2
21	hR10 hR26	A12O3	6	2	81	LD21	CaSi ₂	5	J Dolu
22	hR1A	Al-Sr-	6	Polv	82	hR15	CeMo S	9	r Oly
23	hR34	Al-Te.	8	3	83	hR21	Ce.O.	5	ਸ ਸ
25	hR2	Δς	1	1	84	hR53	Co_7O_{12}	11	1
25	hR25	As Cu Ho.S.	Q	2	85	hR18	$Co_{2}Er_{2}$	7	4
20	hR7	As-Cu-Na	4	2	86	hR20	C_0 Fe Th	6	F
28	hR26	As Cu-Se.	10	1	87	hR32	Co.Ge.S.	12	2
20	hR17	As-Fe ₁₀ Ru ₂	9	Polv	88	hR5	CrCuS	5	Ē
30	hR11	As Ge Te	6	2	89	hR4	CrCuSe	4	4
31	hR13	As Ge Te	7	2	90	hR4	CrNaS	3	1
32	hR28	As Pb Ste	8	Ē	91	hR9	Cr-Na-Se	5	3
33	hR7	AsSe ₂ Tl ₂	3	3	92	hR10	Cr_2S_2	4	4
34	hR12	AuNa ₂ S ₂	3	3	93	hR28	CsMo.Sea	6	Polv
35	hR13	Au ₂ Rb ₄ Sn ₂	5	4	94	hR14	CueFeS	8	E
36	hR6	AusSn	4	1	95	hR4	Cu-GaSr	3	3
37	hR12	B	2	2	96	hR26	Cu-Hg	9	Polv
38	hR111	B	16	Polv	97	hR8	$Cu_3K_3P_2$	4	4
39	hR141	B	20	Е	98	hR13	CuMo ₃ S ₄	5	Ē
40	hR105	В	15	4	99	hR6	Cu ₃ NaTe ₂	6	Poly
41	hR31	$\mathbf{B}_{12}\mathbf{B}\mathbf{a}_{7}\mathbf{I}\mathbf{r}_{12}$	6	Poly	100	hR9	CuNb ₆ S ₁₀	5	3
42	hR34	B ₆ Ba ₂ Ni ₉	4	3	101	hR 17	Cu ₂ P ₂ Yb	9	Poly
43	hR15	$B_{13}C_2$	4	3	102	hR12	Cu ₅ P ₄ Yb ₂	6	4
44	hR29	B ₁₉ C	6	Е	103	hR26	Cu ₉ S ₅	14	Ε
45	hR12	B ₂ CU	4	4	104	hR15	Er ₃ Ni ₂	4	3
46	hR96	$B_8Ce_{15}N_{25}$	10	Ε	105	hR38	$Eu_2Re_6S_{11}$	5	4
47	hR13	B ₆ Co ₂ Pr ₅	5	3	106	hR9	Fe ₂ Ga ₂ S ₅	5	3
48	hR13	B ₆ Co ₃ Tb ₄	5	4	107	hR21	FeMo ₁₂ S ₁₆ Sn ₂	5	Poly
49	hR 18	B_2Co_3Zr	5	4	108	hR10	FePSe ₃ -a	3	3
50	hR133	B ₂₃ Cu	20	Ε	109	hR10	FePSe ₃ -b	6	3
51	hR133	B ₂₈ Cu	20	E	110	hR7	Fe ₃ S ₄	4	4
52	hR113	B ₄₉ Fe	17	E	111	hR10	Fe_3Sn_2	3	3
53	hR12	B_3FeNd_2	4	E	112	hR6	Fe ₂ Tb	3	2
54	hR155	B ₉₀ Ge	22	E	113	hR13	Fe_7W_6	5	4
55	h K 10	B_4L_{15}	4	E	114	hR22	Ga	5	4
				(continue	ed)				(co

TABLE 1. (continued)

TABLE 1. (continued)

No.	Pearson symbol	Structure type	No. of point sets	No. of AETs
115	hR138	Ga ₅₀ K ₄ Na ₁₃	20	Poly
116	hR5	Ga ₂ Li ₃	3	1
117	hR20	Ga14Li3	4	3
118	hR120	Ga ₁₃ Na ₇	18	Poly
119	hR14	$Ga_4Pd_7Zn_3$	6	2
120	hR16	Ga₃Pu	4	2
121	hR4	GaSe	4	2
122	hR49	$Ga_{41}V_8$	11	Poly
123	hR38	$Ge_3La_4S_{12}$	7	4
124	hR6	$GeRh_3Y_2$	3	2
125	hR2	GeTe	9	E
126	hR20	H ₂ HoNi ₃	7	E
127	hR14	H ₄ N ₂ Th	3	E
128	hR23	HP_4Pd_{30}	6	E
129	hR1	Hg	1	1
130	hR2	HgIn	2	1
131	hR24	HgMg ₃	7	4
132	hR16	InMg ₃	8	E
133	hR72	$In_2Mo_{15}Se_{19}$	9	Poly
134	hR73	$In_4SSe_2Te_3$	15	E
135	hR7	In_2S_4Zn	7	3
136	hR14	In_2S_4Zn	14	3
137	hR9	$In_2S_5Zn_2$	9	3
138	hR5	In_2Se_3	5	3
139	hR44	In_3Yb_8	7	Poly
140	hR12	Ir ₃ Se ₈	4	2
141	hR16	K ₃ SbSe₄	4	3
142	hR26	$Li_5Mo_9S_{12}$	5	E
143	hR10	Li₅NaSn₄	10	4
144	hR22	$L_{15}Na_2Sn_4$	11	4
145	hK/	$L_{17}S_{13}$	4	1
140	hK20 LD15	MO_3NIS_4	5	E
14/ 170	nR15 LDA2	Mo Dh So	4	4 Dolu
140	NK42 LD2	Mos Mos	2	Poly
149	hRJ 1217	MOS_2 Mo S Sn	5	2
150	LDAA	M0658511 Mo S T1	10	
151	hR1A	Mo Se	3	4
152	hR16	N	2	F
154	hR3	N-W	2	2
155	hR5	N.W.	3	3
156	hR7	Na _c Pb ₂	1	Ē
157	hR8	Na ₂ S ₂ Sn	3	Ē
158	hR4	NaS ₄ Ti ₂	4	3
159	hR4	NbS ₂	4	2
160	hR7	Ni ₁ Pb ₂ S ₂	4	4
161	hR6	NiS	2	2
162	hR5	Ni_3S_2	2	2
163	hR7	$Ni_3S_2Sn_2$	4	4
164	hR5	Ni_3Se_2	2	2
165	hR4	NiTe	2	2
166	hR7	Ni ₂ Ti	4	2
167	hR2	O ₂	1	E
168	hR28	O_5P_2	6	Е
169	hR19	O ₁₂ Pr ₇	4	E
170	hR16	OZr ₃	5	E
171	hR17	P_2Pd_{15}	5	4
172	nK20	$r_3 r_0 r_7$	8 7	Poly
1/3	пКэв	$r_{13} \kappa e_6$	/	3
				(

No.	Pearson	Structure	No. of	No. of
	symbol	type	point sets	AETs
74	hR32	P ₁₆ Si ₉ Sn ₄	12	4
75	hR8	P ₃ Sn	2	2
76	hR14	Pd₄Pu ₃	4	3
77	hR44	$Pd_8Sb_3 - a$	12	Poly
.78	hR44	$Pd_8Sb_3 - b$	24	Poly
79	hR27	Pd ₂₀ Sb ₇	6	3
180	hR92	$Re_{25}Zr_{21}$	10	3
181	hR22	Rh ₃ ScSi ₇	4	4
82	hR11	Rh_3Se_8	3	3
83	hR6	S ₂ Ta	6	3
84	hR6	STi	4	2
85	hR14	S ₄ Ti ₃	8	2
86	hR22	S ₁₁ Ti ₈	12	2
87	hR8	$S_{12}Ti_7$	5	2
88	hR14	S ₁₄ Ti ₁₁	8	2
89	hR27	STl ₂	9	Ε
l 9 0	hR22	Sb ₃ Zn ₄	3	3
91	hR6	Se	1	1
92	hR8	Se ₄ Zr ₃	4	1
.93	hR3	Sm	2	2
.94	hR19	Th_2Zn_{17}	5	4
95	hR16	Ga ₇ Rb	4	4

TABLE 2. List of 195 rhombohedral "intermetallic" structure types ordered according to Pearson symbol; the structure type hR16 Ga₇Rb was added to the list during printing. The structure types marked with an E in the last column were after the analysis (see text) excluded from our classification

No.	Pearson symbol	Structure type	No. of point sets	No. of AETs
129	hR1	Hg	1	1
25	hR2	As	1	1
70	hR2	BiO	2	Е
125	hR2	GeTe	2	Ε
130	hR2	HgIn	2	1
167	hR2	O_2	1	Е
149	hR3	MoS ₂	3	2
154	hR3	N_2W	2	2
193	hR3	Sm	2	2
89	hR4	CrCuSe ₂	4	4
90	hR4	CrNaS ₂	3	1
95	hR4	Cu ₂ GaSr	3	3
121	hR4	GaSe	4	2
158	hR4	NaS ₄ Ti ₂	4	3
159	hR4	NbS ₂	4	2
165	hR4	NiTe	2	2
73	hR5	Bi_2Te_3	3	1
88	hR5	CrCuS ₂	5	Е
116	hR5	Ga ₂ Li ₃	3	1
138	hR5	In_2Se_3	5	3
155	hR5	N_6W_7	3	3
162	hR5	Ni ₃ S ₂	2	2
164	hR5	Ni ₃ Se ₂	2	2

(continued)

TABLE 2. (continued)

TABLE 2 (continued)

	Pearson symbol	Structure type	No. of point sets	No. of AETs	No.	Pearson symbol	Structure type	No. of point sets	No. of AETs
1	hR6	AgCrSe ₂	4	2		hR13	Fe ₇ W ₆	5	4
5	hR6	Au₅Sn	4	1	2	hR14	Ag ₃ AsS ₃	3	2
0	hR6	CaSi ₂	3	3	23	hR14	Al ₉ Sr ₅	6	Poly
9	hR6	Cu ₃ NaTe ₂	6	Poly	60	hR14	B ₆ P	3	2
2	hR6	Fe ₂ Tb	3	2	94	hR14	Cu ₅ FeS ₄	8	E
.4	hR6	$GeRh_3Y_2$	3	2	119	hR14	$Ga_4Pd_7Zn_3$	6	2
51	hR6	NiS	2	2	127	hR14	H₄N₂Th	3	Е
33	hR6	S ₂ Ta	6	3	136	hR14	In ₂ S ₄ Zn	14	3
4	hR6	STi	4	2	152	hR14	Mo ₃ Se ₄	3	3
1	hR6	Se	1	1	176	hR14	Pd₄Pu ₃	4	3
3	hR7	Al_4C_3	4	3	185	hR14	S ₄ Ti ₃	8	2
7	hR7	As ₂ Cu ₄ Na	4	4	188	hR14	S14Ti11	8	2
3	hR7	AsSe ₃ Tl ₃	3	3	3	hR15	$Ag_2Cr_7S_{12}$	6	Е
7	hR7	B ₅ Mo ₂	4	4	18	hR15	Al ₃₁ Cu ₁₆ Ni ₄	8	Poly
1	hR7	Bi ₃ Se₄	4	1	43	hR15	$B_{13}C_2$	4	3
0	hR7	Fe ₃ S₄	4	4	82	hR15	CeMo ₆ S ₈	4	4
5	hR7	In ₂ S₄Zn	7	3	104	hR15	Er ₃ Ni ₂	4	3
5	hR7	Li ₇ Si ₃	4	1	147	hR15	Mo ₆ PbS ₈	4	4
6	hR7	Na Pb	1	Е	69	hR16	BiMn	4	3
50	hR7	Ni ₃ Pb ₅ S ₅	4	4	77	hR16	CSi	16	4
53	hR7	Ni ₃ S ₂ Sn ₂	4	4	120	hR16	Ga ₂ Pu	4	2
56	hR7	NiaTi	4	2	132	hR16	InMg ₃	8	Ē
7	hR8	AgNh.S.	4	2	141	hR16	K ₃ ShSe ₄	4	3
8	hR8	AgS.Ta.	4	2	153	hR16	N ₂	2	E
76	hR8	CNi.	2	2	170	hR16	$0Zr_{1}$	5	Ē
0 07	hR8	Cu.K.P.	4	2	29	hR10 hR17	As-FeRu-	9	Poly
., .7	hR8	Na.S.Sn	3	т Я	72	hR17	BisSe.	o o	1
75	hR8	P Sn	2	2	101	hR17	Cu.P.Yh	ó	Poly
7	hR8	1 3011 S. Ti	5	2	150	hR17	Mo.S.Sn	5	F
,, 12	hR8	Se. 7r	4	1	171	hR17	P.Pd.,	5	4
0	hRQ	$\Delta 1 \cap 7n$	q	4	40	hR18	B.Co.7	5	4
17	hR9 hR0	Cr No Se	5	3	85	LD18	$D_2 C O_3 Z I$	7	2
in L	hRQ	C_{171} $a_2 \\ C_{12}$	5	3	50	hR10	B.Ni.Sr	, A	ر د
,0)6	hRQ	Fe Ga S	5	3	57 67	hR10	Be-Nh		т Д
17	hRQ	In-S-7n-	ğ	2	160	hR10	O ₁ Pr-	4	7 3
,, 91	hR10		2	2	10/	hR10	Th_{7}		4
5	hR10	BLI.	- 4	2 F	224	hR20	Δ1.He	5	7 2
 12	hR10	Cr-S	4	4	20	11(20 1270	Co.Fe.Th	6	2 F
2 12	hR10	E_2O_3	7	3	117	hR20 hR20	Gali	4	2
)0 10	11110 L R 10	FeDSa _h	5	3	117	11120 hp70	Ua ₁₄ Li ₃ H.HoNi		с Б
1	hR10 hR10	Fe.Sn	3	3	120	LR20	D. D.d.	8	Doby
3	LR10	1.030112 I i NiaSa	10	Д	11	hR20 hD21		0 5	FUIY
1.5 1.0	hR11	LISITAJII4 As Go To	6	7	11	hR21 hR21	AICN	11	E
20 20	hR11	Rice Te	11	<u>۔</u> 1	14	hR21 hR21	$Ce_{-}O$	5	е F
20	hR11 hR11	$D_2 \cup C_3 \cup C_6$ Dh Se	3	3	0 <i>3</i> 107	LD21	$C_7 U_{12}$ EeMo S Sr	5	Poly
52 34	hR17	AuNa S	3	3	107	111/21 hR77	$C.M_{P}$ P-	5	FOIY
27 27	hR12 hR12	R	2	2	11/	hR77	G2	5	1
57 15	LP12	BCu	4	2- A	114	LDJJ	Ua Li Na Sa	J 11	-+
3	hR12	B ₂ Cu B ₂ EeNd	4	F	1 44 101	LB33	Dh Sosi	4	4
5	LD12	BaDh	7	2	101 10 <i>4</i>	LD22	Сизосон7 С Т:		1
55 56	hR12 hR12	Baru ₃ Re.Nh		2	100	れて22 トアつつ	$S_{11} I_{8}$ Sh. 7 n	3	2
00 10	NA12 6212		5	5	190	ルハンン ルロファ	3032114 110 DA	5	э Е
20 10	NA12 6010	$Cu_5\Gamma_4 I D_2$	0 1	יי י	128	NK23 LD24	nr4ru ₃₀	0	Е 2
+U 2 1	NK12 LD12	$II_3 Se_8$	47	2	L 01	NK24 LP24	AgASS ₂	4	2 Bal-
25	NA13 LD12	$As_2 U e_4 I e_7$, 5	2 A	10	nr.24 1. D24	$U_5 U_{19}$	У 7	roiy
55 47	ЛК13 LD12	$Au_7KD_4SD_2$	5	4	131	NK24 1.D25	HgM_{3}	/	4
+/ 10	NR13 6012	$\mathbf{D}_6 \subset 0_2 \mathbf{P} \mathbf{I}_5$	5	5	20	NK23 LD26	$As_4 Cu_6 Hg_3 S_{12}$	у 0	2
ŧð	nKIS	B ₆ CO ₃ ID ₄	5	4	1/	nK20	AlgCr5	У	2
70	LD12		5			LDDC	AIDJ	4	2

(continued)

TABLE 2. (continued)

No.	Pearson	Structure	No. of	No. of
	symbol	type	point sets	AETs
96	hR26	Cu ₇ Hg ₆	9	Poly
103	nR26	Cu_9S_5	14	E
142	hR26	$L_{15}MO_9S_{12}$	5	E
146	hR26	MO ₃ N1S ₄	5	E
179	hR27	$Pd_{20}Sb_7$	6	3
189	hR27	STl ₂	9	E
32	hR28	As ₄ Pb ₉ S ₁₅	8	E
93	hR28	CsMo ₆ Se ₇	6	Poly
168	hR28	O_5P_2	6	E
15	hR29	$Al_8C_3N_4$	15	E
44	hR29	$B_{19}C$	6	E
41	hR31	$B_{12}Ba_7Ir_{12}$	6	Poly
64	hR31	Ba_2NbS_5	8	E
87	hR32	$Co_2Ge_3S_3$	12	2
174	hR32	P ₁₆ Si ₉ Sn ₄	12	4
24	hR34	Al_7Te_{10}	8	3
42	hR34	B ₆ Ba ₂ Ni ₉	4	3
105	hR38	$Eu_2Re_6S_{11}$	5	4
123	hR38	Ge ₃ La ₄ S ₁₂	7	4
173	hR38	P ₁₂ Re ₆	7	3
6	hR42	AgMg _e Zn _o	15	2
148	hR42	Mo ₀ Rb ₂ Se ₁₀	9	Poly
9	hR44		7	Poly
74	hR44	C.HøN.Rb	7	E
139	hR44	In Yh	7	Poly
151	hR44	Mo.S., Th	10	4
177	hRAA	$\frac{100951112}{Pd Sb - 2}$	10	Poly
178	hR44	PdSb = b	24	Poly
5	LD44	$I u_8 S U_3 = 0$	19	FOIY
122	LP40	Ag_8OC1C_6	10	L Dolu
122	1.052	$Ga_{41}v_8$	11	Poly
04 70	nK33 1.DC2	$CO_5 CI_2 MO_3$	11	4 E
10	nR02		02	
133	nK/2	$ln_2MO_{15}Se_{19}$	9	Poly
134	hR/3	$In_4SSe_2Te_3$	15	E
180	hR92	$\operatorname{Re}_{25}\operatorname{Zr}_{21}$	10	3
46	hR96	$B_8Ce_{15}N_{25}$	10	E
40	hR105	В	15	4
38	hR111	В	16	Poly
12	hR113	AlB ₅₂ Cu	17	E
52	hR113	B ₄₉ Fe	17	E
56	hR115	B ₂₃ Mn	18	E
61	hR119	B ₂₈ Sc	18	E
63	hR119	$B_{51}Zr$	18	E
118	hR120	Ga ₁₃ Na ₇	18	Poly
62	hR121	$B_{25}Zn$	19	E
50	hR133	B ₂₃ Cu	20	E
51	hR133	B ₂₈ Cu	20	E
10	hR137	AlB ₃₁	19	E
115	hR138	Ga ₅₀ K ₄ Na ₁₃	20	Poly
39	hR141	В	20	Е́
58	hR143	B ₉₇ Ni ₂	20	Ē
54	hR155	BonGe	22	Ē
16	hR168	AlCa ₂ Cd ₁	60	Ē
195	hR16	Ga ₇ Rb	4	4
	<i>m</i> (10	Jugito	T	-

E, excluded.

lead to too short (long) interatomic distances. We will show later on that it is possible to make a differentiation between structure types wherein the improbable interatomic distances are physically impossible and structure types wherein the improbable interatomic distances can occur. Thus in total we excluded, after analysing all 195 structure types, 51 structure types for the reasons given above.

This left us with 144 structure types representing 1324 compounds and 6356 atomic environments (point sets). Our analysis was performed after the transformation of the data to the standard setting of the *International Tables for Crystallography*, Vol. A [5] and after comparing each entry with the original publication in order to prevent transcription errors.

Our aim by using this atomic environment analysis is to find answers to the following questions.

(1) Which structure types are most likely to be correct?

(2) Which structure types are related?

(3) Which kinds of atomic environments are realized?

(4) Which as yet unknown rules relates the nature of the constituents of a compound to its crystal structure?

In Section 2 we briefly recapitulate our method for defining an atomic environment type (AET).

Section 3 gives the observed atomic environment types and with the aid of some examples we show that incorrect structure determinations can lead to the realization of incorrect atomic environments.

In Section 4 the results of the observed coordination types are briefly discussed and compared with results of other investigations.

Relations between the rhombohedral structure types are given in Section 5.

In Section 6 the structure types with improbable interatomic distances are discussed in detail and we show, with examples, that in some cases it is possible to redescribe the structure type in such a way that the resulting observed atomic environments are correct.

2. Classification of crystal structures based on atomic environments

A crystal structure is completely determined by the following data:

(1) chemical formula,

(2) space group and unit cell dimensions,

(3) coordinates of the point sets (atomic positions) and their occupancy.

These characteristics lead to a fairly large number of different structure types (nearly 2800 types are listed in ref. 4, including the rhombohedral structure types), which makes it almost impossible to see connections or even to detect identities. About half of these structure types are described and geometrically depicted in the *Atlas of Crystal Structure Types for Intermetallic Phases* [6]. In this atlas we give for each structure type detailed crystallographic data, a three-dimensional drawing of the unit cell, the cell content and two projections of the cell and for each atom in the asymmetrical unit the coordinates and drawings of the coordination polyhedra (atomic environments).

The remaining structure types were excluded from the atlas [6] for the following reasons:

(1) all oxides with no intermetallic compounds,

(2) incomplete structure types, *i.e.* if one of the atoms is not refined,

(3) structure types with more than 20 point sets,

(4) structure types with physically improbable interatomic distances,

(5) structure types with either dumb-bells or dipoles.

It is obvious that on these grounds we excluded, apart from the incorrect structure types, also the structures with mainly ionic and/or covalent bonds between the atoms.

The aim of the concept described more extensively in ref. 1 and briefly recapitulated hereafter is to define the AEs as clearly as possible so that we will be able to group them into distinct AETs.

We defined an AE using the Brunner-Schwarzenbach method [7], in which all interatomic distances between an atom and its neighbours are plotted in a nextneighbour histogram as shown in Fig. 1a. In most cases a clear maximum gap is revealed, as can be seen in Fig. 1a. All atoms to the left of this maximum gap belong to the AE of the central atom. This rule is called the maximum gap rule and the AE of Fig. 1b is constructed according to this rule with the atoms to the left of the maximum gap. The AE environment shown in Fig. 1b is a truncated hexagonal eclipsed bipyramid, also called a twinned cubo-octahedron or an anticubo-octahedron [8, 9], and is found in hexagonal closed-packed structures. The structure types considered in ref. 4 are analysed according to this rule only and therefore there may be some differences between the analysis in this investigation and the AE depicted in the atlas.

Fig. 1. (a) A typical example of a next-neighbour histogram and (b) the AE constructed with the atoms before the maximum gap in this histogram. The AE shown is the short-range atomic arrangement as observed in h.c.p. structures and is called the twinned cubo-octahedron.

In those cases where this rule leads to AEs with not only the central atom enclosed or to AEs with atoms on one (or more) of the faces of the coordination polyhedron, we defined the maximum convex volume rule. This rule is defined as the maximum volume around only one central atom enclosed by convex faces, with all the coordinating atoms lying at the intersections of at least three faces. This rule was also used in those cases where no clear maximum gap was detectable. In those cases where two (or more) equal or practically equal maximum gaps were observed, we kept the number of different AETs in a structure type as small as possible.

The AETs are characterized using the codes explained in refs. 1 and 10. The code of the AE shown in Fig. 1b is $12^{(2.2)}$, which is the same as the code for the cubo-octahedron, the latter being found in cubic closedpacked structures.

3. Observed atomic environment types

Using the rules given above, we have analysed all 144 rhombohedral intermetallic structure types. Our approach leads to conventional atomic environment types for most metals or alloys. However, in combinations of metals with p-elements on the right of the Zintl line or in combinations with hydrogen we sometimes obtained irregular AETs (IAETs). We consider normal AETs as environment types which can be visualized by coordination polyhedra and IAETs as environment types which cannot be described as a convex volume.

Our analysis showed that the 144 structure types with 1324 compounds have 6356 AEs (point sets) which belong to 67 distinct AETs. Of those AEs, 71% belong to one of the 14 most frequently occurring AETs shown in Fig. 2. AETs were added to this list when they were observed in at least 10 different structure types.

The remaining 53 normal AETs and IAETs are shown in Fig. 3. The 67 distinct high symmetry AETs were derived from 251 observed related AEs. This reduction was possible since we assigned the AEs with the lower symmetry code to the AEs with the highest symmetry code as explained in ref. 1. In Figs. 2 and 3 these 67 AETs and IAETs are listed together with their codes and labels. In ref. 1 the AETs were labelled by a capital character for the most frequently occurring AETs, by a number for the remaining AETs and the IAETs were labelled by a small character. This labelling system can, although it is in itself correct, easily lead to confusion when we combine the results from the "cubic" analysis [1] with the results from this analysis. Therefore we changed the labelling system of the AETs to labels which are a combination of the coordination number (CN) and a character, e.g. the icosahedron (old label K) is now labelled 12-a; the IAETs are also given by

Fig. 2. The 14 most frequently occurring AETs with their polyhedron codes (lower left corner of each box). In the upper left corner of each box the assigned labels are given, consisting of the coordination number and a letter (a, b, ...) separated by a - for a normal AET and a # for an irregular AET. With an @ in the upper right corner we mark the AETs which are also observed in the cubic structure types.

the CN and a character but they are separated by a #, e.g. the loose triangle (old label d) is now labelled 3#a.

In Appendix A we list the observed AETs in the cubic symmetry with in the first column the old label and in the second column the new label; an @ is added to the label (in the third column) for the AETs which are also observed in the structure types with rhombohedral symmetry. In addition, we give the number of times that the AET is observed in the structure types in respectively the single- to poly-environment groups and in the last column the total. In Appendix B the number of point sets for each AET is given in the same manner.

In Fig. 4 the distribution frequency observed for the 14 most frequently occurring AETs in the rhombohedral

structure types is plotted. When compared with our results from the cubic structure types [1], we see some similarities as well as some differences. As in the cubic case, the AETs with even coordination numbers are greatly preferred; the tetrahedron, the octahedron and the icosahedron are observed more often than the other AETs.

Remarkably, an IAET had to be added to the list because it appeared in many rhombohedral structure types. This IAET is the loose triangle 3#a (Fig. 2) and it is observed mainly in combinations of metals with sulphur, selenium and tellurium.

The loose triangle appears mainly in so-called layered structures. For example, in $hR3 \text{ MoS}_2$ the molybdenum atomic environment is an anticubo-octahedron consisting of six sulphur and six molybdenum atoms, while

(continued)

both sulphur atoms have three molybdenum atoms as their nearest neighbours; see Figs. 5a–5f for the atomic environments and the corresponding next-neighbour histograms (NNHs).

In Fig. 6a the NNH of one of the sulphur atoms is given and apart from the maximum gap three other gaps are defined (b-d respectively). We show in the Figs. 6b-6d the "polyhedrons" belonging to these gaps and we observe that the "polyhedron" constructed with

the 10 atoms of gap b (see Fig. 6b) is a loose 10-atom body, meaning that all 10 atoms are situated on one side of the sulphur atom. Including the next three neighbouring atoms belonging to gap c (see Fig. 6c) gives a very distorted convex polyhedron and constructing a polyhedron with the 16 atoms belonging to gap d (see Fig. 6d) gives a polyhedron with three atoms (shaded in Fig. 6d) situated exactly on the edges of the polyhedron.

Fig. 3. The remaining 53 AETs and IAETs with their polyhedron codes (lower left corner of each box). In the upper left corner of each box the assigned labels are given, consisting of the coordination number and a letter (a, b, ...) separated by a - for a normal AET and a # for an irregular AET. With an @ in the upper right corner we mark the AETs which are also observed in the cubic structure types.

Fig. 4. A frequency plot of the 14 most frequently occurring AETs.

Fig. 5. The observed AETs in $hR3 \text{ MoS}_2$; (a) the twinned cubooctahedron for Mo, (b, c) the loose triangle for both S atoms and (d-f) their corresponding next-neighbour histograms.

With this example we demonstrate that in some structures the preferable atomic environment is not always a complete polyhedron but that an irregular atomic environment is sometimes a better choice, especially in these layered structures. As in the cubic symmetry, it is not possible to decide whether some of these odd AETs are real or a consequence of the inaccuracy of the structure determination. Although in the following example the analysis did not lead to new AETs, the inconsistency sometimes

Fig. 6. (a) The NNH for one of the sulphur atoms in $hR3 \text{ MoS}_2$ and (b-d) the AEs constructed with the atoms belonging to one of the shown gaps, with (b) 10, (c) 13 and (d) 16 atoms respectively.

observed in structure determinations is clearly demonstrated.

In the system Pd–Sb two structure determinations are published, both with the composition Pd_8Sb_3 , numbers 177 and 178, both solutions having the rhombohedral symmetry and as Pearson symbol *hR*44 (crystallographic data of both compounds in Table 3), with respectively 12 or 24 atoms in the asymmetric unit. In the structure description with 12 point sets five different AETs are observed, while in the description with 24 point sets seven AETs are observed (see Table 8 with the poly-environment types).

It is fairly obvious that in the example given one of the solutions is incorrect or, more probably, in the latter solution, which has the lowest symmetry, the structure is refined in the wrong space group (see also Table 11). Although it is not the direct purpose of this study, it is in this example quite obvious that we think that the description with the highest symmetry is the best model for describing this structure type.

177 $hR44$ Space gr R3c a = 0.761 c = 4.3032	4 Pd ₈ Sb ₃ oup No. 1 52 nm 2 nm	a 61				178 $hR44$ Space gr R3 a = 0.759 c = 4.32 1	4 Pd ₈ Sb ₃ oup No. nm nm	- b 146			
Atom	В	x	у	z	Ν	Atom	В	x	у	z	Ν
Pd1	6a	0	0	0.7301	1	Pd1		0	0	0.142	1
Pd2	6 <i>a</i>	0	0	0.3864	1	Pd2	3a	0	0	0.202	1
Pd3	6a	0	0	0.0104	1	Pd3	3a	0	0	0.365	1
Pd4	6a	0	0	0.6680	1	Pd4	3a	0	õ	0.490	1
Sb1	6a	0	0	0.7921	1	Pd5	3a	0	Õ	0.646	1
Sb2	6a	0	0	0.1060	1	Pd6	За	0	0	0.707	1
Sb3	6a	0	0	0.4487	1	Pd7	3a	0	0	0.860	1
Pd5	18b	0.5882	0.9139	0.0000	1	Pd8	3a	0	0	0.989	1
Pd6	18b	0.3495	0.0103	0.0325	1	Sb1	3 <i>a</i>	0	0	0.081	1
Pd7	18b	0.7320	0.0026	0.0626	1	Sb2	3a	0	0	0.261	1
Pd8	18b	0.3638	0.0023	0.0976	1	Sb3	3a	0	0	0.427	1
Sb4	18b	0.6774	0.9782	0.1323	1	Sb4	3a	0	0	0.583	1
						Sb5	3a	0	0	0.769	1
						Sb6	3a	0	0	0.925	1
						Pd9	9b	0.250	0.010	0.038	1
						Pd10	9b	0.735	0.008	0.536	1
						Pd11	9b	0.651	0.004	0.074	1
						Pd12	9b	0.358	0.997	0.567	1
						Pd13	9b	0.306	0.001	0.105	1
						Pd14	9b	0.694	0.002	0.609	1
						Pd15	9b	0.640	0.017	0.141	1
						Pd16	9b	0.430	0.079	0.642	1
						Sb7	9b	0.657	0.006	0.006	1
						Sb8	9b	0.360	0.010	0.506	1

TABLE 3. Crystallographic data for the structure type hR44 Pd₈Sb₃ refined in two space groups (161 and 146)

B, multiplicity and Wyckoff letter; N, occupancy.

4. Observed coordination types

Before we give the classification we will introduce the term coordination type. In our classification, structure types belong to a certain coordination type when they have the same number and kinds of AETs.

The 144 analysed structure types of Table 1 can be divided into five groups according to the number of different AETs.

(1) Single-environment structures, *i.e.* all atoms have the same AET. This group of 14 structure types containing 257 representatives with a total of 762 point sets can be subdivided into six coordination types.

(2) Two-environment structures, *i.e.* each of the atoms has one of the two AETs. This group of 39 structure types containing 203 representatives with a total of 766 point sets can be subdivided into 19 coordination types.

(3) Three-environment structures, *i.e.* each of the atoms has one of the three AETs. This group of 36 structure types containing 327 representatives with a total of 1623 point sets can be subdivided into 24 coordination types.

(4) Four-environment structures, *i.e.* each of the atoms has one of the four AETs. This group of 34 structure types containing 456 representatives with a total of

2244 point sets can be subdivided into 29 coordination types.

(5) Poly-environment structures combining more than four AETs. This group of 21 structure types (with 20 coordination types) contains 81 representatives with a total of 961 point sets.

In Tables 4–8 the structures are arranged according to the number of environments, from single-environment (Table 4) to poly-environment (Table 8) structures.

In the single-environment group we observed six coordination types, giving a reduction of 57% compared with the 14 structure types. Almost the same reduction is observed in the two-environment group, namely 51%; the reduction in the three-environment group is 31%, in the four-environment group 15% and in the poly-environment group 5%.

In Table 9 we list the observed AETs in the rhombohedral symmetry with in the first column the label (an @ is added to this label in the second column when the AET was also observed in the cubic structure types), in the next five columns the number of times the AET is observed in a structure type in respectively the single- to poly-environment groups and in the last column the total. In Table 10 we list in the same manner the number of times an AET is observed on a point set.

TABLE 4. Structure types belonging to the single-environment group ordered according to coordination types with increasing coordination numbers

	5 7	ure	point sets	compounds	lination er			,	Mc Ato	ost f mic	req En	uer Ivire	ntly onn	oco nen	curi t Ty	ring /pe:	S			Remaining Atomic Environment T	ypes	Remarks
No.	Pears symbo	Struct type	No. of	No. of	Coorc numb	3#a	4–a	6-a	9-9	8-a	9-a	10-a	11-a	12-a	12-b	13-a	14-a	14-b	16a	AET	IAET	
191	hR6	Se	1	2	2																2#a	
28	hR26	As ₆ Cu ₇ Se ₁₃	10	1	4		X															
25	hR2	As	1	20	6			\boxtimes								Ì						
90	hR4	CrNaS ₂	3	144	6			\boxtimes														
73	hR5	Bi ₂ Te ₃	3	52	6			X														
71	hR7	Bi₂Se₄	4	18	6			X														
192	hR8	Se ₄ Zr ₃	4	6	6			\boxtimes														
68	hR11	Bi2Ge3Te6	11	1	6			\boxtimes														
72	hR17	Bi ₈ Se ₉	9	1	6			X														
129	hR1	Hg	1	5	12										\boxtimes							
130	hR2	Hgln	2	2	12										\boxtimes							
36	hR6	Au ₅ Sn	4	1	12															12-d		
116	hR5	Ga ₂ Li ₃	3	3	14													\boxtimes				
145	hR7	Li ₇ Si3	4	1	14													\boxtimes				
14	structu	ire types		257	compounds		10	724							9			13		4	2	point sets 762

No	son Sol	cture.	of point sets	of compounds	dination bers	Most frequently occurring Atomic Environment Types Remaining Atomic Environment Types										Remarks						
110.	Pears	Struc type	No. c	No. c	Coor	3#a	4-a	6-3	9-9	8-a	မီ	10-8	11-a	12-a	12b	13-a	14-a	14-b	16-a	AET	IAET	
76	h R8	CNi3	2	3	2/6			X													2#a	
121	hR4	GaSe	4	2	3/4	\boxtimes	Х															
2	hR14	Ag ₃ AsS ₃	3	4	3/4	\boxtimes	X															
1	hR24	AgAsS ₂	4	2	3/4	\boxtimes	\boxtimes															
25	hR25	$As_4Cu_5Hg_3S_{12}$	9	2	3/4	X	\boxtimes															
30	h R1 1	As ₂ Ge ₃ Te ₆	6	1	3/6	X		X														
31	hR13	As₂Ge₄Te7	7	1	3⁄6	\boxtimes		\boxtimes														
149	hR3	MoS ₂	3	18	3/12	\boxtimes														12-d		
154	hR3	N ₂ W	2	12	3/14	\boxtimes														14 -0		
175	hR8	P ₃ Sn	2	2	4/6		X	Х														
21	hR10	Al ₂ O ₃	2	11	4/6		X	Х														
140	hR12	Ir ₃ Se ₈	4	1	4/6		X	Х														
87	hR32	Co ₂ Ge ₃ S ₃	12	2	4/6		X	X													Ţ	
60	hR14	₿ ₆ ₽	3	6	4/6		Х													6d		
165	hR4	NiTe	2	1	4/7		\square													7-с	1	
161	hR6	NiS	2	2	5⁄7															5-a; 7-b	1	
159	hR4	NbS ₂	4	9	6/6			X	X													
184	hR6	STi	4	1	6/6			X	Х												1	
187	hR8	S ₁₂ Ti ₇	5	10	6/6			X	Х													
185	hR14	S4Ti3	8	1	6/6			Х	Х													
188	hR14	S ₁₄ Ti ₁₁	8	1	6/6			X	X													
186	hR22	S ₁₁ Ti ₈	12	1	6/6			X	X												1	
37	hR12	В	2	1	6⁄7															6d; 7d	1	
162	hR5	Ni ₃ S ₂	2	3	6/8				\mathbb{X}	X												
164	hR5	Ni ₃ Se ₂	2	1	6/8				X	Χ												
4	hR6	AgCrSe ₂	4	14	6/10	Γ		X												10b		
166	hR7	Ni ₂ Ti	4	1	8/10															8–c; 1–b		
193	hR3	Sm	2	31	12/12										Х					12-d	1	
65	hR12	BaPb ₃	4	26	12/12										Х					12-d		
120	hR16	Ga ₃ Pu	4	3	12/12	Γ									X					12d	1	
20	hR20	Al ₃ Ho	6	11	12/12										X					12-d	1	
17	hR26	Al ₈ Cr ₅	9	6	12/13								•	Х		X					1	
112	hR6	Fe ₂ Tb	3	3	12/16									Х					Х			F-K
124	hR6	$GeRh_3Y_2$	3	5	12/16									Х					\boxtimes		1	F-K
6	hR42	AgMg ₅ Zn ₉	15	1	12/16		· ·							X					\boxtimes		1	F-K
7	hR8	AgNb₄S ₈	4	1	13/14															13-d; 14-e	1	
8	hR8	AgS ₈ Ta₄	4	1	13/14															13d; 14e	1	[]
119	hR14	Ga ₄ Pd ₇ Zn ₃	6	1	13/14													X		13-b;		
22	hR26	AlPd	6	1	13/14													X		1 3 ~ p;		
39	structu	re types		203	compounds	70	64	147	40	4				60	133	18		4	15	208	3	point sets 766

TABLE 5. Structure types belonging to the two-environment group ordered according to coordination types with increasing coordination numbers. F-K designates a Frank-Kasper structure type

TABLE 6. Structure types belonging to the three-environment group ordered according to coordination types with increasing coordination numbers. F-K designates a Frank-Kasper structure type

	5 0	ure	point sets	compounds	lination ers				Mc Atc	ost f	req : Er	juei nvir	- ntly onr	oci nen	curi It Ty	ring ype) S			Remaining Atomic Environment	Types	Remarks
No.	Pears	Struct type	No. of	No. of	Coord	3#a	4-a	e a	٩	8-a	J	0 E	1-	12-a	12-b	13-a	14-8	14-b	16-a	AET	IAET	
33	hR7	AsSe ₃ Tl ₃	3	5	1/3/14	X			Γ	Γ			Γ							14-f	1#a	
141	hR16	K₃SbSe₄	4	1	1/4/14		X	1		Γ			Γ	1	Γ	Γ	X]			1#a	
24	hR34	Al ₇ Te ₁₀	8	1	2/3/4	X	\mathbb{X}	Γ				Γ					Γ	Γ			2#a	
43	hR15	B ₁₃ C ₂	4	3	2/4/6		\mathbb{N}			Γ			Γ	Γ			Γ	Γ	Γ	6d	2#5	
69	hR16	BiMn ₃	4	1	2/12/14										X		\mathbb{N}]			2#a	
138	hR5	In ₂ Se3	5	5	3/4/6	X	\mathbb{X}	\mathbb{X}		Γ			Γ	Γ								
135	hR7	ln₂S₄Zn	7	16	3/4/6	X	X	X								Γ		Γ				
106	hR9	$Fe_2Ga_2S_5$	5	1	3/4/6	X	\mathbb{X}	X														
137	hR9	In ₂ S ₅ Zn ₂	9	1	3/4/6	Χ	X	Х														
108	hR10	FePSe ₃	3	8	3/4/6	X	\mathbb{X}	\mathbb{X}														
109	hR10	FePSe ₃	6	2	3/4/6	$\overline{\mathbb{N}}$	\mathbb{N}	X											Γ		T	
182	hR11	Rh ₃ Se ₈	3	3	3/4/6	X	\mathbb{N}	\mathbb{X}										Γ	Γ			
79	hR13	C ₅ Ti ₈	5	1	3/4/6	X	\mathbb{X}	\mathbb{X}						Γ			Γ	Γ	Γ			
136	hR14	In₂S₄Zn	14	1	3/4/6	X	X	X						Γ					Γ			
152	hR14	Mo₃Se₄	2	23	3/4/10	Х	X													10b		
183	hR6	S ₂ Ta	6	1	3/6/6	X		X	X		Γ	Γ						Γ			T	
91	hR9	Cr7Na2Se12	5	1	3/6/14	X	\Box		X											14 - e	T	
158	hR4	NaS₄Ti ₂	4	8	3/6/16	X		X												16d	1	1
13	hR7	Al ₄ C ₃	4	2	4/5/6		X	Х												5a	1	
190	hR22	Sb₃Zn₄	3	2	4/5/6		X	Х												5-a		
173	hR38	P ₁₃ Re ₆	7	1	· 4/8/9		X				X									8-d		
47	hR13	B ₆ Co ₂ Pr ₅	5	3	5/6/14															5c; 14d	6#e	
100	hR9	CuNb ₆ S ₁₀	5	1	6/7/14				X											7–c; 14–e	Τ	
80	hR6	CaSi ₂	3	5	6/7/16			X												7–c; 16–c	1	
95	hR4	Cu ₂ GaSr	3	2	6/10/20			X				X								20-a		
111	hR10	Fe ₃ Sn ₂	3	2	6/11/15			•					X	1						15-a	6#e	
155	hR5	N ₆ W ₇	3	1	6/13/14			X												13d; 14e		
34	hR12	AuNa ₃ S ₂	3	1	7/8/14					X							X			7-a		
42	hR34	B ₆ Ba ₂ Ni ₉	4	1	7/8/15															7-b; 8-d; 15-a		
104	hR15	Er ₃ Ni ₂	4	20	9/14/16						Х						Χ		X			
117	hR20	Ga ₁₄ Li ₃	4	1	10/10/14												X			10b; 10f		
179	hR27	Pd ₂₀ Sb ₇	6	2	12/13/16									Х		X			X			
176	hR14	Pd₄Pu ₃	4	31	12/14/16									X			\boxtimes		\boxtimes			
180	hR92	Re ₂₅ Zr ₂₁	10	З	12/14/16									X			X		X			FK
66	hR12	Be ₃ Nb	5	122	12/16/20									X					\boxtimes	20-a		
85	hR18	Co7Er2	7	45	12/16/20									X					X	20-a		
36	structu	re types		327	compounds	1 10	124	73	3	1	21	2	2	645	1	8	92		243	273	25	point sets 1623

TABLE 7. Structure types belonging to the four-environment group ordered according to coordination types with increasing coordination numbers. F-K designates a Frank-Kasper structure type

	6 0	e a	point sets	compounds	lination ers	Most frequently occurring Atomic Environment Types Ato										Remaining Atomic Environment	Types	Remarks				
No.	Pears symbi	Struct type	No. of	No. of	Coord numb	3#a	4-a	6-a	ſ	8-a	ľ	10-a	11-a	12-a	12-b	13-a	14-a	14-b	16-a	AET	IAET	
77	hR16	CSi	16	1	1/4/4/7		X													7 -0	1#a 4#b	
123	hR38	Ge ₃ La ₄ S ₁₂	7	11	1/4/7/9		X				X									7-b	1#a	
45	hR12	B₂CU	4	2	2/3/6/9			X												9c	2#b 3#b	
48	hR13	B ₆ Co₃Tb₄	5	21	2/5/6/7															5–с; 7–а	2#b 6#e	
174	hR32	P ₁₆ Si ₉ Sn₄	12	1	3/4/6/7	\boxtimes	X	X												7-a		
105	hR38	Eu ₂ Re ₆ S ₁₁	5	4	3/4/9/14	\boxtimes	Х										Х			9b		
110	hR7	Fe₃S₄	4	1	3/6/13/14	X			X											13-d; 14-e		
160	hR7	Ni3Pb2S2	4	19	3/8/10/12	X								Х						8		
163	hR7	Ni3S2SU5	4	1	3/8/10/12	X								Х						8c; 10c	1	
97	hR8	Cu ₃ K ₃ P ₂	4	3	3/12/14/18	X								Х						14c; 18c		
82	hR15	CeMo ₆ S ₈	4	1	4/4/8/10		X			X		X									4#b	
147	hR15	Mo ₆ PbS ₈	4	115	4/4/8/10		X			X		X									4#b	
151	hR44	Mo9S11TI2	10	2	4/4/8/10	Γ	X			X		X									4#b	
89	hR4	CrCuSe ₂	4	5	4/5/6/7		X		X									-		5c; 7-a	<u> </u>	
195	hR16	Ga ₇ Rb	4	1	4/6/7/21		\mathbf{X}		X											7-d; 21-a	1	
92	hR10	Cr ₂ S ₃	4	6	4/6/8/13			X		X										13d	4#b	
35	hR13	Au ₇ Rb ₄ Sn ₂	5	1	4/6/17/19		X	X												17d; 19b	1	
40	hR105	В	15	1	6/6/8/9			\boxtimes												6d; 8e; 9c	1	[
114	hR22	Ga	5	1	6/8/10/12			X												8-e; 10-c; 12-h	1	
57	hR7	B ₅ Mo ₂	4	5	6/9/10/20			X			X									10b; 20a		<u> </u>
171	hR17	P2Pd15	5	1	6/12/14/15				X			-		X			X			15-a	1	
102	hR12	Cu ₅ P ₄ Yb ₂	6	1	7/10/13/14							X						X		7-a; 13-e	1	
59	hR19	B ₆ Ni ₁₂ Sr	4	21	7/11/12/30								X	Х						7-b; 30-a	1	
143	hR10	Li ₅ NaSn₄	10	1	7/11/13/14								Х					X		7c; 13b	1	
181	hR22	Rh ₃ ScSi ₇	4	2	8/9/9/18						X									8e; 9b; 18c	1	
49	hR18	B ₂ Co ₃ Zr	5	2	9/13/14/20						X					X	X			20a	1	
27	hR7	As₂Cu₄Na	4	4	10/13/14/20							X						X		13-e; 20-a	1	
19	hR9	Al ₄ Cu ₃ Zn	9	1	11/11/13/14		[Х					X		11-d; 13-b	1	
144	hR22	Li ₅ Na ₂ Sn ₄	11	1	11/12/13/14								X		\overline{X}			X		13-b	1	
131	hR24	HgMg ₃	7	1	12/12/12/13								4	X	${\boldsymbol{\nabla}}$					12–c; 13–b	1	[
67	hR19	Be ₁₇ Nb ₂	5	5	12/13/14/19									X	,	X	X			19c	1	
194	hR19	Th ₂ Zn ₁₇	5	160	12/13/14/19									X		X	\boxtimes			19c	1	
113	hR13	Fe ₇ W ₆	5	42	12/14/15/16									X			X		X	15-a	1	FK
84	hR53	Co ₅ Cr ₂ Mo ₃	11	12	12/14/15/16									Х			X		\boxtimes	15-a	1	F-K
34	structu	re types		456	compounds	33	162	18	8	126	20	128	32	534	2	167	239	15	16	632	112	point sets 2244

	م وَ	e	f point sets	f compounds	dination Brs			,	Mc Ato	st f mic	req : En	uer	ntly on n	oci nen	curi It Ty	ring /pe:	S			Remaining Atomic Environment 1	Types	Remarks
No.	Pears symb	Struc type	No. o	No. o	Coore	3#a	4-a	Г В	م لو	8-a	9-a	10-a	11-8	12-a	12-b	13-a	148	14-b	16-8	AET	IAET	
133	h R 72	In ₂ Mo ₁₅ Se ₁₉	9	10	3/4/9/10/11	X					Х	Х	X								4#b	5 AETs
93	hR28	CsMo ₆ Se ₇	6	1	3/4/9/10/13	X					X	Х				X					4#b	5 -
148	hR42	$Mo_9Rb_2Se_{10}$	9	1	3/4/10/12/13	X						Х		X		Χ					4#b	5 -
41	hR31	$B_{12}Ba_7Ir_{12}$	6	1	4/4/5/17/18		X													5–c; 17–d; 18–c	4#d	5 *
96	hR26	Cu ₇ Hg ₆	9	1	4/7/8/9/9/12						Х			\boxtimes						7–a; 8–d; 9–b	4#b	6 -
38	hR111	В	16	24	6/6/7/8/9			X												6-d; 7-d; 8-e; 9-c		5 "
115	hR138	Ga ₅₀ K₄Na ₁₃	20	1	6/8/9/10/11 16/18/19/20						Х								X	6d; 8d; 10c; 11b; 18c; 19b; 20a		9 -
172	hR20	P3Pd7	8	1	7/8/8/13/16								Γ		Γ	\mathbb{N}			\square	7-b; 8b; 8d		5 -
107	hR21	FeMo ₁₂ S ₁₆ Sn ₂	5	1	7/8/9/10/14		Γ				X					Γ	X			7–a; 8–d; 10–c	[5 -
99	hR6	Cu ₃ NaTe ₂	6	1	7/9/10/11/17						Х				Γ					7-c; 10-b; 11-e; 17-e		5 -
101	hR17	Cu ₂ P ₂ Yb	9	1	7/10/13/14/18							Х						Χ		7-b; 13-e; 18-a		5 -
122	hR49	Ga ₄₁ V ₈	11	13	8/9/10/10/12/13					Х					Х	Х				9-b; 10-b; 10-c		6 .
9	hR44	Al ₃ Au ₈	7	1	8/10/11/12/13					Х			X	Х		Χ				10c		5 -
177	hR44	Pd ₈ Sb ₃ -a	12	9	8/10/11/12/13					Х			X	Х		X				10–c		5 -
139	hR44	In ₂ Yb ₅	7	2	8/10/11/12 13/14					X			X	X]	X	Х			10-c		6 *
178	hR44	Pd ₈ Sb ₃ –b	24	1	8/10/11/12 13/14/15					Х		Х	X	Х]	X	Х			15-a		7 •
29	hR17	As ₅ Fe ₁₀ Ru ₂	9	5	9/10/11/12 14/15						X		X	X	1		K			10b; 15a		6
118	hR120	Ga ₁₃ Na ₇	18	1	10/11/13/16/18														X	10-b; 11-b; 13-f; 18-c		5 *
23	hR14	Al ₉ Sr5	6	1	10/12/14/16/18		Γ	Γ						X			X		X	10b; 18 0		5 •
18	hR15	Al31Cu46Ni4	8	1	11/11/12/13/14								X		X			X		11d; 13b		5 -
81	hR24	Ce5Co19	9	4	12/12/12/16 18/20									X	X				X	12-d; 18-d; 20-a		5 -
21	structu	ire types		81	compounds	22	2	24		26	31	19	42	52	18	81	10	3	13	581	37	point sets 961

TABLE 8. Structure types belonging to the poly-environment group ordered according to coordination types with increasing coordination numbers

When for the single-environment group we combine our results with the results of ref. 1, the number of structure types increases to 40 but the number of coordination types only to 8. It is therefore to be expected that after completing the analysis of all crystal symmetries, the number of coordination types will be significantly lower than the number of structure types.

In the cubic case we found that 92% of the compounds crystallize with one, two or three AETs. In this analysis we observe that 94% of the compounds crystallize in structure types with one, two, three or four AETs (see Fig. 7). Remarkably, most compounds have four AETs, meaning that in the rhombohedral case the structures are more complex than in the cubic case. In Table 7 it can be seen that two of the most "popular" rhombohedral structure types, hR19 Th₂Zn₁₇ and hR15 Mo₆PbS₈, belong to the four-environment group.

5. Related structure types

One of the main advantages of our analysis method is that it is easy to find relations between structures, which enable a differentiation to be made between three types of structural relations.

Fig. 7. Number of compounds vs. number of AETs per structure type for the 1324 rhombohedral compounds.

TABLE 9. Number of times an AET is observed in the rhombohedral structure types; an @ is added to the labels in the second column when the AET was also observed in the cubic structure types

New label	Cubic	Env	ironme	nt type:	5		Total no.	
New label 1#a 2#b 3#b 4-a 5-a 6-b 6-d 6-d 6-d 6-d 6-d 7-a 7-b 7-c 7-b 7-c 7-c 8-a 8-b 8-c 8-c 8-c 8-c 8-c 9-a 9-b 9-c 9-d		Ι	II	III	IV	Poly	types	
1 # a				2	2		4	
2#a	@	1	1	2			4	
2 # b	@			1	2		3	
3#a	@		8	15	6	3	32	
3 # b					1		1	
4-a	@	1	10	15	10	1	37	
4 # b	@			1	5	4	10	
4#d			1		1	1	2	
5-a	@			2			3	
5-с				1	2	1	4	
6-a	@	7	14	16	7	1	45	
6-b	<u>a</u>		8	3	4		15	
6-d	-		2	1	1	2	6	
6#e				2	1		3	
7-a	@			1	4	2	7	
7-b	<u>a</u>		1	1	2	2	6	
7-c	@		1	2	1	1	5	
7-d			1		1	1	3	
7-е					1		1	
8-a	@		2	1	4	5	12	
8-b	@					1	1	
8-c			1		2		3	
8-d				2		4	6	
8-e					3	1	4	
9-a	@			2	4	7	13	
9-b	@				2	2	4	
9-с	@				1	1	2	
9-d					1		1	
10-a	@			1	5	5	11	
10-ь	@		2	1	1	5	9	
10-с	@			1	3	6	10	

(continued)

TABLE 9. (continued)

New	Cubic	Env	ironmer	nt types	5		Total no.	
New label 10-f 11-a 11-b 11-d 11-e 12-a 12-b 12-c 12-d 12-h 13-a 13-b 13-d 13-e 13-f 14-a 14-b 14-c 14-f 15-a 16-c 16-d 17-d 17-e 18-a 18-c		I	II	III	IV	Poly	types	
10-f				1			1	
11-a	@			1	4	7	12	
11-b	@					2	2	
11-d	<u>a</u>				1	1	2	
11-е					1	1	2	
12-a	@		4	5	10	9	28	
12-b	@	2	4	1	2	3	12	
12-с	@				1		1	
12-d	a	1	5			1	7	
12-h	-				1		1	
13-a	a		1	1	3	8	13	
13-ь	<u>a</u>		2		4	1	7	
13-d	Ŭ		2	1	2		5	
13-е					2	1	3	
13-f					_	1	1	
14-a	(<i>a</i>)			7	7	5	19	
14-b	``	2	2		5	2	11	
14-c	``		-		1	-	1	
14-d	``			1	-		1	
14-е	C		3	3	1		7	
14-f			•	1	-		1	
15-a	a			2	3	2	7	
16-a	œ		3	6	2	5	16	
16-c	0			1		-	1	
16-d				1			1	
17-d				•	1	1	2	
17-е					•	1	1	
18-a	0					1	1	
18-c	e				2	3	5	
18-d					2	1	1	
18-e						1	1	
19-h					1	1	2	
19-c					2	*	2	
20-9	0			3	วั	2	8	
21.9	E			5	1	2	1	
30-a					1		1	
a							1	

TABLE 10. Number of times an AET is observed on a point set in the rhombohedral structure types; an @ is added to the labels in the second column when the AET was also observed in the cubic structure types

New label	Cubic	Envir	onmen	Total no. of			
laoel		I	II	ш	IV	Poly	point sets
1#a				7	45		52
2#a	@	2	3	4			9
2 # b	@			3	23		26
3#a	<u>a</u>		70	110	33	22	235
3 # b	_				2		2
4-a	@	10	64	124	162	2	362
4#b	@			23	129	36	188
4#d	-					1	1
5-a	@		2	4			6
5-c	-			3	26	1	30

TABLE 10. (continued)

New	Cubic	Envir	ronmen	t types			Total no. of
		I	11	ш	IV	Poly	
6-a	@	724	147	73	18	24	986
6-b	<u>@</u>		40	3	8		51
6-d	Ũ		13	6	10	169	198
6#e				11	42		53
7-a	@			1	28	2	31
7-b	<u>a</u>		2	1	32	3	38
7-c	<u>@</u>		1	6	1	1	9
7-d			1		1	24	26
7-е					3		3
8-a	@		4	1	126	26	157
8-b	@					1	1
8-c			3		20		23
8-d				3		9	12
8-e					7	144	151
9-a	@			21	20	31	72
9-b	@				6	28	34
9-с	@				1	24	25
9-d					2		2
10-a	@			2	128	19	149
10-ь	@		29	1	5	41	76
10-с	@			23	21	71	115
10-f				2			2
11-a	@			2	32	42	76
11-b	@					14	14
11-d	@				2	2	4
11-е						2	2
12-a	@		60	645	534	52	1291
12-ь	@	9	133	1	2	18	163
12-с	@				1		1
12-d	@	4	129			12	145
12-h					1		1
13-a	@		18	8	167	81	274
13-Ь	@		8		7	1	16
13-d			4	1	7	_	12
13-е					6	2	8
13-f						2	2
14-a	@			92	239	10	341
14-ь	@	13	4		15	3	35
14-c	@				3		3
14-d	@		16	3	1		3
14-e			10	0	1		23
14-I 15 -	0			2	55	11	5
15-a	e e		15	242	55	11	227
10-a	w		15	245	00	15	557
10-C				5			2
10-0 17 d				0	1	1	0
17-u					1	1	2
18-9	0					1	1
10-a 18-c	e				5	3	8
10-C					5	4	4
18-e							1
19-h					1	1	2
19-c					165	•	165
20-a	@			169	13	5	187
21-a	\sim				1	-	1
30-a					21		21

(1) Structure types created by arranging the atoms with identical or similar geometrical positions. Such an arrangement always leads to a lower symmetry. In the rhombohedral system we found no such relations, unless we consider the examples given in Table 11 as belonging to this group.

(2) Structure types which have been "artificially" created by either a translation or a space group reduction. After translation or after combining two point sets, the structure types are the same and therefore incorrectly regarded as new structure types. Four examples are given in Table 12.

TABLE 11. Examples of structure types created by describing the arrangement of the atoms at lower symmetry sites

No.	Pearson symbol	Structure type	Space group number	Multiplicity and Wyckoff letter of point sets			
108	hR10	FePSe ₃ -a	148	бс	18f		
109	hR10	FePSe ₃ -b	146	3a, 3a	9b, 9b		
177	hR44	$Pd_8Sb_3 - a$	161	6 <i>a</i>	18 b		
178	hR44	Pd_8Sb_3-b	146	3a, 3b	9b, 9b		

TABLE 12. Examples of structure types created by either a translation of coordinates (by 0, 0, $\frac{1}{2}$) or a space group reduction

No.	Pearson symbol	Structure type	Space group	Wyckoff positions
162	hR5	Ni ₃ S ₂	155	6c, 9e
164	hR5	Ni_3Se_2	155	6c, 9d
112	hR6	Fe ₂ Tb	166	3b, 6c, 9e $\downarrow \downarrow \downarrow \downarrow$
124	hR6	$GeRh_3Y_2$	166	3a, 6c, 9d
160	hR7	Ni ₃ Pb ₂ S ₂	166	3a, 3b, 6c, 9d
163	hR7	$Ni_3S_2Sn_2$	166	3a, 3b, 6c, 9e
67	hR19	$Be_{17}Nb_2$	166	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
194	hR19	Th_2Zn_{17}	166	6c, 6c, 9d, 18f, 18h

(3) Structure types which can have different space groups as well as different point sets but whose AETs are equal or similar. In our classification such structure types belong to the same coordination type. Some of these relations are well known from the literature, but with our approach we also trace new non-trivial relations.

These relations can easily be seen in our Tables 4–8. In Table 13 we give the observed relations between structure types for the two-, three-, four- and poly-environment groups.

TABLE 13. Structure types with equal AETs for the two-, three-, four- and poly-environment groups

Observed AETs (labels)	No.	Pearson symbol	Structure type
Two-environment group			
3 # a+4-a	121	hR4	GaSe
	2	hR14	Ag ₃ AsS ₂
	1	hR24	AgAsS ₂
	26	hR25	$As_4Cu_6Hg_3S_{12}$
3#a+6-a	30	hR11	$As_2Ge_3Te_6$
	31	hR13	$As_2Ge_4Te_7$
4-a+0-a	1/5	hK8 hD10	P_3Sn
	140	NR10 4P12	Al_2O_3 In Sec.
	87	hR32	II 3508
6-a+6-b	159	hR4	NbS ₂
	184	hR6	STi
	187	hR8	$S_{12}Ti_7$
	185	hR14	S ₄ Ti ₃
	188	hR14	$S_{14}Ti_{11}$
	186	hR22	$S_{11}Ti_8$
6-b+8-e	162	hR5	Ni_3S_2
10 L + 10 J	164	hR5	$N_{1_3}Se_2$
12-0 + 12-d	193	hR3 LD12	Sm Do Dh
	120	hR12 hR16	Ga Pu
	20	hR20	
12-a+16-a	112	hR6	Fe ₂ Tb
	124	hR6	GeRh ₃ Y ₂
	6	hR42	$AgMg_5Zn_9$
13-d+14-e	7	hR8	AgNb ₄ S ₈
	8	hR8	AgS ₈ Ta ₄
13-b+14-b	119	hR14	$Ga_4Pd_7Zn_3$
	22	hR26	AlPd
Three-environment group			
3#a+4-a+6-a	138	hR5	In_2Se_3
	135	hR7	In_2S_4Zn
	106	hR9	Fe ₂ Ga ₂ S ₅
	137	hR9	$In_2S_5Zn_2$
	108	hR10	$FePSe_3 - a$
	109	hR10	FePse ₃ -b
	79	hR13	Kn_3Se_8
	136	hR13	$L_5 \Pi_8$ In S.Zn
4-a+5-a+6-a	13	hR7	
	190	hR22	Sb ₃ Zn₄
12-a+14-a+16-a	176	hR14	Pd₄Pu ₃
	180	hR92	$Re_{25}Zr_{21}$
12-a+16-a+20-a	66	hR12	Be ₃ Nb
	85	hR18	$Co_7 Er_2$
Four-environment group			
3#a+4#b+8-c+12-a	160	hR7	Ni ₂ Pb ₂ S ₂
	163	hR7	$Ni_3S_2Sn_2$
4-a+4 # b+8-a+10-a	82	hR15	CeMo ₆ S ₈
	147	hR15	Mo ₆ PbS ₈
	151	hR44	$Mo_9S_{11}Tl_2$
12-a + 13-a + 14-a + 19-c	67	hR19	$Be_{17}Nb_2$
17 + 14 + 15 + 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16	194	hR19	Th_2Zn_{17}
12-a + 14-a + 15-a + 16-a	113	nK13 LD52	Fe_7W_6
	04	nrss	$O_5 Cr_2 MO_3$
Poly-environment group			
8-a+10-c+11-a+12-a	9	hR44	Al ₃ Au ₈
+13-a	177	hR44	Pd ₈ Sb ₃
·			

A good example demonstrating the strength of our approach is found in the two-environment group by looking at the structures with the cubo-octahedron and the twinned cubo-octahedron, both having CN = 12 and the labels 12-b and 12-d respectively. If we accept minor distortions from the ideal form due to properties of the constituent atoms, four structure types belong to this coordination type, namely 193 hR3 Sm, 65 hR12 BaPb₃, 120 hR16 Ga₃Pu and 20 hR20 Al₃Ho.

Special relations exist between the structure types consisting mainly of boron and it was very difficult to classify them with our approach. For example, in hR12 B with two atoms in the asymmetrical unit as AETs, the monocapped (label 6-d) and the bicapped (label 7-d) pentagonal pyramid are realized. These AETs with pentagonal faces are typical of structures with boron and in our opinion this structure can much better be described as a structure consisting of cubic close-packed icosahedral B₁₂ clusters (see Figs. 8a and 8b). In contrast with our AETs, these clusters have no central atom.

In many papers these structure types are therefore treated as structure types containing clusters of boron atoms (see *e.g.* ref. 11).

A cubooctahedral boron cluster can be found in cF52 B₁₂U, where we have the U atoms and the cubooctahedral B₁₂ clusters in a cF8 ClNa type of lattice. In cP7 B₆Ca we have octahedral boron clusters and the Ca atoms in a cP2 ClCs type of lattice [11].

In some modifications of boron these icosahedral B_{12} clusters are connected to each other by AETs which do have a central atom. For example, in *hR*105 B these B_{12} clusters are connected by an octahedron and in *tP*50 B four of these B_{12} clusters are connected by a tetrahedron.

The so-called Frank-Kasper structures are marked in our Tables 4-8 with the abbreviation F-K in the last column. Shoemaker and Shoemaker [12] give two rhombohedral structure types with Frank-Kasper coordination polyhedra. These structures are hR13 Mo₆Co₇ and hR53 Co₅₁Cr₁₈Mo₃₁. In addition to these two, we found that hR6 Fe₂Tb, hR6 GeRh₃Y₂, hR42 AgMg₅Zn₉, hR92 Re₂₅Zr₃₁, hR13 Fe₇W₆ and hR53 Co₅Cr₂Mo₃ are also Frank-Kasper structure types, the latter two being the same structure types as those named in ref. 12. The labels of the AETs observed in the F-K structure types are 12-a, 14-a, 15-a and 16-a.

6. Structure types with "improbable" interatomic distances

In ref. 1 we have extensively described the difficulties we encountered in the classification of structure types

Fig. 8. The structure of hR12 B drawn (a) with and (b) without icosahedral B_{12} clusters; the centres of the B_{12} clusters are shaded in a.

with partly occupied point sets. Calculating interatomic distances in these structure types almost always results in these distances being too short. Also, although many of these structures have been published incorrectly, *e.g.* owing to printing errors, we have in ref. 1 extensively described how in some cases these inconsistencies can be removed.

We gave two possible solutions for these inconsistencies, both based on the fact that it is possible that these point sets are not statistically occupied. The first inconsistency can be removed when too short distances occur between atoms of the same point set and the occupation of this position is 0.5 or less. This means physically that this position cannot be occupied truly statistically and the short-range atomic arrangement probably has a lower symmetry. We call this an enantiomorphic principle, as explained in ref. 1, and it can be found in e_{sc} . hR8 Na₂S₃Sn.

The second inconsistency exists when atoms are distributed over two point sets with fractional occupancies, say 0.75 and 0.25. In this situation it is not possible to find a simple enantiomorph. This ordering is only possible when an exclusion principle is in operation which prevents simultaneous occupation of both sides. This so-called exclusion principle can be observed in *e.g.* hR20 Co₄Fe₄Th. In hydrogen- (deuterium-)containing structures we observed improbable interatomic distances, either too long (D–D) or too short (D–M). Owing to the variable size of the hydrogen (deuterium) atom, it is difficult to classify them. We observed that all the published hydrogen-containing structure types are derived from one of the three parent structures 66 hR12 Be₃Nb, 171 hR17 P₂Pd₁₅ and 194 hR19 Th₂Zn₁₇.

Most of the structure types consisting mainly of boron have partly occupied point sets and therefore physically improbable interatomic distances. These problems and the aforementioned difficulties made us decide to exclude them all and we classified them as belonging to the filled-up type.

It is beyond the scope of this work to find the possible ordered structure types. In Table 14 we have listed 11 structure types in which such ordering could in principle occur and 17 filled-up types. We would like to stress that in these cases, where nature realises such ordering, the structure type represents an average situation of at least two different "pure" single phases. These structure types represent a rather "exotic" group of structures which have in general only one representative.

For the structure types given in Table 15, those with highly improbable short interatomic distances, the same holds, *i.e.* that they have only one representative.

No.	Pearson symbol	Structure type	No. of representatives	Calculated shortest int distance (nm)	eratomic
157	hR8	Na ₂ S ₃ Sn	1	S-S 0.0286	(1) See text
94	hR14	Cu ₅ FeS ₄	1	M3-M5 0.0306	(2) See text
3	hR15	$Ag_2Cr_7S_{12}$	1	Ag1-Ag2 0.0505	(2)
150	hR17	Mo ₆ S ₈ Sn	1	Sn1-Sn2 0.0690	(2)
86	hR20	Co ₄ Fe ₄ Th	6	Th1-M1 0.1281	(2) See text
126	hR20	H ₂ HoNi ₃	1		(3) $hR12$ Be ₃ Nb type
11	hR21	AlB ₄₀ C ₄	1		(3)
75	hR22	$C_2Mn_{17}Pr_2$	20		(3) $hR19 \text{ Th}_2\text{Zn}_{17}$ type
128	hR23	HP ₄ Pd ₃₀	1		(3) $hR17 P_2Pd_{15}$ type
103	hR26	Cu ₉ S ₅	1	Cu4-Cu5 0.0048	(2) See text
142	hR26	$Li_5Mo_9S_{12}$	5	Li2–Li2 0.1152	(1)
146	hR26	Mo₃NiS₄	11	Ni1–Ni2 0.1186	(2)
44	hR29	B ₁₉ C	1		(3)
64	hR31	Ba ₂ NbS ₅	2	Ba3-Ba3 0.0858	(1)
5	hR46	Ag ₈ GeTe ₆	1	Ag8-Ag12 0.0889	(2)
134	hR73	$In_4SSe_2Te_3$	2	M3-Te1 0.0758	(2)
12	hR113	AlB ₅₂ Cu	1		(3)
52	hR113	B49Fe	1		(3)
56	hR115	B ₂₃ Mn	1		(3)
61	hR119	B ₂₈ Sc	1		(3)
63	hR119	$B_{51}Zr$	1		(3)
62	hR121	$B_{25}Zn$	1		(3)
50	hR133	B ₂₃ Cu	1		(3)
51	hR133	B ₂₈ Cu	1		(3)
10	hR137	AlB ₃₁	1		(3)
39	hR141	В	1		(3)
58	hR143	$B_{97}Ni_2$	1		(3)
54	hR155	B ₉₀ Ge	1		(3)

TABLE 14. List of 28 excluded structure types with seemingly improbable interatomic distances (11) or so called filled-up structure types (17)

(1) Enantiomorphic principle; (2) exclusion principle; (3) filled-up structure.

TABLE 15. List of 23 excluded structure types with highly improbable interatomic distances (13), oxides (five), incomplete refinement (three) and p-element structures (two)

No.	Pearson symbol	Structure type	No. of representatives	Improbable short or long distance (nm), distance or other reason for exclusion
70	hR2	BiO	1	Oxide
125	hR2	GeTe	1	Ge-Te 0.5142
167	hR2	O ₂	1	No intermetallic
88	hR5	CrCuS ₂	5	Cu1-S1 0.1334
156	hR7	Na_5Pb_2	1	Sodium not refined
55	hR10	B ₄ Li ₅	1	Li1-Li2 0.1046
53	hR12	B_3FeNd_2	1	Boron not refined
98	hR13	CuMo ₃ S ₄	1	Cu1-Cu1 0.0998
127	hR14	H₄N₂Th	1	Hydrogen not refined
132	hR16	InMg ₃	1	In3-Mg2 0.1822
153	hR16	N_2	1	No intermetallic
170	hR16	OZr ₃	1	Oxide
169	hR19	O ₁₂ Pr ₇	1	Oxide
14	hR21	$Al_6C_3N_2$	2	See text
83	<i>hR</i> 21	Ce_7O_{12}	1	Oxide
189	hR27	STl ₂	1	S1-S2 0.0009
32	hR28	As ₄ Pb ₉ S ₁₅	1	S1-S2 0.1288, Pb2-S4 0.1329
168	hR28	O_5P_2	1	Oxide
15	hR29	$Al_8C_3N_4$	1	See text
74	hR44	C ₄ HgN ₄ Rb ₂	1	N2-C2 0.1109
78	hR62	CSi	1	Too long c axis
46	hR96	$B_8Ce_{15}N_{25}$	1	Ce1-N4 0.2095
16	hR168	AlCa ₃ Cd ₁₇	1	Cd7-Cd38 0.1824 (see text)

In structure types with partly occupied point sets the Pearson symbol becomes questionable, especially in those structures where the full occupancy is prohibited by the geometry.

For some structure types we have tentatively redescribed the structures; we have replaced the partly occupied point set(s) by fully occupied point set(s) with a lower multiplicity.

An example of a redescribed structure type is given below and other examples are given in Table 16.

The structure type hR20 Co₄Fe₄Th can be seen as a defect structure of the hR19 Th₂Zn₁₇ structure type in which the dumb-bell of the M1 atoms along the c axis is partly substituted by a Th atom at the origin. The opposite effect is frequently observed in the hP6 CaCu₅ structure type [13]. In these compounds, *e.g.* LaNi₅, the rare earth atom at the origin is partly substituted by a dumb-bell of nickel atoms along the c axis and around the origin.

In the structure types 14 hR21 Al₆C₃N₂ and 15 hR29 Al₈C₃N₄ (their crystallographic data are given in the left half of Table 16) the atoms are created too close to each other. In fact, the description gives two atoms on each 6c position, *e.g.* in hR14 Al₆C₃N₂ the Al1 atom

Old des	cription					New description								
157 hR8 Space gi R3m	Na ₂ S ₃ Sn roup No.	166				90 hR4 (Space gr R3m								
Atom	В	x	у	z	Ν	Atom	В	x	у	z	N			
м	3a	0	0	0	1	М	3a	0	0	0	1			
Na	3b	0	0	$\frac{1}{2}$	1	Na	3b	0	0	12	1			
S	18h	0.6915	0.3085	0.0730	0.33	S	6c	23	3	0.0730	1			

B, multiplicity and Wyckoff letter; N, occupancy.

TABLE 16. Crystallographic data of four examples of redescribed structure types

14 hR21 Space gr R3m	Al ₆ C ₃ N ₂ oup No.	166					14 hR11 Space gro R3m	Al ₆ C ₃ N ₂ oup No.	166			
Atom	В	x	у	z	N		Atom	В	x	у	z	N
C1	3a	0	0	0	1	_	C1	3a	0	0	0	1
Al1 Al6	6c 6c	0 0	0 0	0.6910 0.3092	1 1	}→	Al1	6c	0	0	0.6909	1
Al2 Al5	6c 6c	0 0	0 0	0.0850 0.9137	1 1	} →	A12	6c	0	0	0.0843	1
A13 A14	6c 6c	0 0	0 0	0.8069 0.1911	1 1	} →	A13	6 <i>c</i>	0	0	0.8079	1
C2 C3	6c 6c	0 0	0 0	0.1351 0.8641	1 1	} →	C2	6c	0	0	0.1346	1
N1 N2	6c 6c	0 0	0 0	0.7406 0.2597	1 1	} →	N2	6 <i>c</i>	0	0	0.7402	1
15 hR29 Space gr R3m	Al ₈ C ₃ N ₄ roup No.	166				<u></u>	15 hR15 Space gr R3m	Al ₈ C ₃ N ₄ oup No.	166			
Atom	В	x	у	z	Ν		Atom	B	x	у	z	Ν
C1	3a	0	0	0	1		C1	3a	0	0	0	1
Al1 Al8	6c 6c	0 0	0 0	0.6852 0.3250	1 1	} →	Al1	6 <i>c</i>	0	0	0.6851	1
Al2 Al7	6c 6c	0 0	0 0	0.0633 0.9365	1 1	}→	Al2	6 <i>c</i>	0	0	0.0634	1

264

TABLE 16. (continued)

	· · · · · · · · · · · · · · · · · · ·											
15 $hR29$ Al ₈ C ₃ N ₄ Space group No. 166 $R\bar{3}m$						15 hR15 Al ₈ C ₃ N ₄ Space group No. 166 R3m						
Atom	В	x	у	z	Ν		Atom	В	x	у	z	N
Al3 Al6	6c 6c	0 0	0 0	0.7752 0.2268	1 1	}→	Al3	6c	0	0	0.7760	1
Al4 Al5	6c 6c	0 0	0 0	0.1494 0.8522	1 1	}→	Al4	6c	0	0	0.1502	1
C2 C3	6c 6c	0 0	0 0	0.8112 0.1898	1 1	} →	C2	6 <i>c</i>	0	0	0.8117	1
N1 N4	6c 6c	0 0	0 0	0.7212 0.2788	1 1	} →	N1	6c	0	0	0.7212	1
N2 N3	6c 6c	0 0	0 0	0.0993 0.9005	1 1	} →	N2	6c	0	0	0.0992	1
94 hR14 Space gr R3m	Cu₅FeS₄ oup No.	160					94 hR5 Cu_5FeS_4 Space group No. 160 R3m					
Atom	В	x	у	z	Ν		Atom	В	x	у	z	Ν
M1 M2	3a 3a	0 0	0 0	0.000 0.500	1 1		M1 M2	3a 3a	0 0	0 0	0.000 0.500	1
M3 M5	3a 9b	0 0.973	0 0.027	0.155 0.142	0.25 0.25	$\} \rightarrow$	M3	3a	0	0	0.150	1
S1 M4	3a 9b	0 0.027	0 0.973	0.365 0.378	0.25 0.25	$\left. \right\} \rightarrow$	M4	3a	0	0	0.356	1
M6 S2	9b 3a	0.973 0	0.027 0	0.622 0.635	0.25 0.25	$\Big\} \rightarrow$	M5	3 <i>a</i>	0	0	0.630	1
103 <i>hR</i> 20 Space gr <i>R</i> 3 <i>m</i>	6 Cu ₉ S5 oup No.	166					103 $hR14$ Cu ₉ S ₅ Space group No. 166 $R\overline{3}m$					
Atom	В	x	у	z	N		Atom	В	x	у	z	N
S1 Cu1	3a 3b	0 0	0 0	0 0.500	0.5 0.5	ì	C1 Cu1	3a 3b	0 0	0 0	0 0.500	0.5 0.5
Cu2 Cu3	6c 6c	0 0	0 0	0.060 0.940	0.5 0.5	} →	Cu2	6c	0	0	0.060	1
Cu4 Cu5	6c 6c	0 0	0 0	0.133 0.866	0.5 0.5	} →	Cu3	6c	0	0	0.133	1
Cu6 Cu7	6c 6c	0 0	0 0	0.250 0.750	0.5 0.5	} →	Cu4	6c	0	0	0.250	1
Cu8 Cu9	6с 6с	0 0	0 0	0.350 0.650	0.5 0.5	} →	Cu5	6c	0	0	0.350	1
S2 S3	6c 6c	0 0	0 0	0.200 0.800	0.5 0.5	$\Big\} \rightarrow$	S2	6c	0	0	0.200	1
S4 S5	6c 6c	0 0	0 0	0.400 0.600	0.5 0.5	} →	S3	6c	0	0	0.400	1

B, multiplicity and Wyckoff letter; N, occupancy.

has the same atomic coordinates as the Al6 atom. This inconsistency can be removed if we redescribe the structures with six or eight atoms respectively in the asymmetrical unit (see right half of Table 16). For this operation the originally given occupation numbers must be wrong of course, because in our description the Pearson symbol changes from hR21 to hR11 and from hR29 to hR15. A more or less similar effect is observed in 103 hR26 Cu₉S₅, although in this operation the occupation numbers change from 0.50 to 1.00 and the Pearson symbol to hR14 (see Table 16).

It is of course unnecessary to emphasize that in all our redescribed structures we observed normal AETs after the redescription.

In the structure type hR168 AlCa₃Cd₁₇ with 62 atoms in the asymmetrical unit we observed that the too short interatomic distances were always connected with the Cd38 atom (Cd38–Ca8 0.2452 nm, Cd38–Cd7 0.1824 nm, Cd38–Cd20 0.1891 nm). It seems that there is a printing error in the coordinates of this Cd38 atom.

7. Conclusions

Our analysis shows that in 4482 (71%) out of 6356 investigated AEs in rhombohedral systems nature prefers one of the 14 most symmetrical AETs shown in Fig. 2. Remarkably, these 14 AETs are equally often found in single-environment up to poly-environment groups, meaning that even in complex structures symmetrical AETs are preferred. In rhombohedral symmetry the geometrically simplest structure types are preferred, containing one, two, three or four AETs.

Most structure types with improbable interatomic distances can be classified according to the enantiomorphic or exclusion principle or are of the filled-up parent structure type.

Acknowledgments

The authors are grateful to Dr. F. Hulliger, Dr. B. Dam, D. B. de Mooij, Dr. W. Groen and Dr. A.

Kinneging for their interest in this work and for their critical reading of the manuscript. Special thanks go to H. W. Wondergem who suggested the new labelling system for our AETs.

References

- J. L. C. Daams, P. Villars and J. H. N. van Vucht, J. Alloys Comp., 182 (1992) 1-33.
- 2 P. Villars and F. Hulliger, J. less-Common Met., 132 (1987) 289-315.
- 3 P. Villars, K. Mathis and F. Hulliger, Environment classification and structural stability maps, in F. R. de Boer and D. Pettifor (eds.), *The Structure of Binary Compounds*, Elsevier, Amsterdam, 1989, pp. 1–103.
- 4 P. Villars and L. D. Calvert, *Pearson's Handbook of Crys*tallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 2nd edn., 1991.
- 5 Th. Hahn (ed.), International Tables for Crystallography, Vol. A, Reidel, Dordrecht, 1983.
- 6 J. L. C. Daams, P. Villars and J. H. N. van Vucht, Atlas of Crystal Structure Types for Intermetallic Phases, ASM International, Materials Park, OH, 1991.
- 7 G. O. Brunner and D. Schwarzenbach, Z. Kristallogr., 133 (1971) 127.
- 8 W. B. Jensen, in F. R. de Boer and D. G. Pettifor (eds.), *The Structure of Binary Compounds*, Vol. 2, North-Holland, Amsterdam, 1989, pp. 105–146.
- 9 E. Parthe, in *Elements of Inorganic Structural Chemistry*, Sutter Parthe, Petit-Lancy, 1990, p. II-11.
- 10 J. L. C. Daams, P. Villars and J. H. N. van Vucht, Z. Kristallogr., 185 (1988) 714.
- 11 W. B. Pearson, in *The Crystal Chemistry and Physics of Metals* and Alloys, Wiley, New York, 1972, pp. 756–758.
- 12 D. P. Shoemaker and C. B. Shoemaker, Acta Crystallogr. B, 42 (1986) 3.
- 13 W. Coene, P. H. L. Notten, R. E. F. Einerhand, F. Hakkens and J. L. C. Daams, *Philos. Mag. A*, 65 (1992) 1485-1502.

Appendix A

Number of times an AET is observed in the cubic structure types; an @ is added in the third column when the AET is also observed in the rhombohedral structure types

Old label	New label	Rhombohedral	Enviro	Total no. of				
			I	II	ш	IV	Poly	structure types
b	2 # a	@			1	1		2
a	2 # b	0			1			1
d	3#a	@		1	1	3		5
Α	4-a	@	5	8	9	6	2	30

266

Appendix A (continued)

Old	New	Rhombohedral	Enviro	Total no. of				
	labet		I	II	III	IV	Poly	structure types
g	4 # b	@			2			2
e	4#c			1				1
В	5-a	@		3		2		5
h	5 # b			1	1			2
С	6-a	@	5	9	9	4	2	34
1	6-b	<u>a</u>				2		2
i	6#c	0			1	_		1
2	7-a	0		1	2	2		5
D	7-h	@ @		1	2	2		1
3	7-c	@		-	1			1
F	8-3		1	0	3	1	1	15
1	0-a 8 h		1	9	J 1	1	1	15
4 E	0-0	<u>w</u>		2	1	1	1	3
г 7	9-a	<u>w</u>		3	4	4	3	14
	9-0	<u>@</u>		1			2	3
6	9-c	(a)			-		1	1
Н	10-a	<u>(a)</u>		4	2	2	2	10
9	10-ь	@			1	1	5	7
G	10-c	@			2		3	5
8	10-d					1	1	2
10	10-е					1		1
I	11-a	@	1	1	4		1	7
J	11-b	@			2	1	2	5
11	11-c			1		1	2	4
12	11-d	@				1		1
Κ	12-a	@	1	11	12	12	12	48
L	12-ь	[—]	5	1	6	1	2	15
N	12-c	<i>a</i>			1	4	6	11
M	12-d				1	2	Ū	3
15	12-e	8			1	1	2	3
13	12 C 12-f					1	2	1
14	12-1 12 a				1	T		1
0	12-g	0	1	1	1	2	0	20
D	15-a 12 h	<u>w</u>	1	1	0	3	9	20
Г 14	13-0	W					2	2
10	13-c			-	1	l	<u>_</u>	2
Q	14-a	a O		3	1	6	9	19
K 10	14-b	(a)	8		1		2	11
18	14-c	(@		1			2	3
17	14-d	<i>(a)</i>			1	1		2
S	15-a	@				4	9	13
19	15-ь						1	1
Т	16-a	@		3	2	3	8	16
21	16-b					1		1
22	17-a				1	2		3
23	17-ь					1	1	2
24	17-с					1		1
U	18-a	@			1	2	3	6
25	18-b						1	1
26	19-a						1	1
31	20-a	(a)					1	1
30	20-ь	<u> </u>			1		-	1
28	20-с				1			î
27	20-d				1			1
29	20-е			1	*			1
34	24-a			2				2
32	24-h			2	1			1
33	24-c			1	1			1 1
35	24-d			1	1			1
	⊷ r-u				T			I

Appendix B

Number of times an AET is observed on a point set in the cubic structure types; an @ is added in the third column when the AET is also observed in the rhombohedral structure types

Old	New	Rhombohedral	Environm	Total no. of				
label	label		I	II	III	IV	Poly	point sets
ь	2#a	@			1	4		5
a	2 # b	@			139			139
d	3#a	@		2	9	23		34
Α	4-a	@	352	730	158	35	3	1278
g	4 # b	@			29			29
e	4#c			2				2
В	5-a	@		121		25		146
h	5 # b			1	8			9
С	6-a	@	1375	847	230	29	3	2484
1	6-b	@				3		3
j	6#c				1			1
2	7-a	@		6	25	26		57
D	7-b	@		36				36
3	7-с	@			1			1
Е	8-a	<u>@</u>	8	527	31	158	4	728
4	8-b	@			6	6	77	89
F	9-a	@		53	47	66	5	171
7	9-ь	@		1			14	15
6	9-c	^o					1	1
н	10-a	ā		347	22	6	2	377
9	10-ь	à			68	2	18	88
G	10-c	ã			3		7	10
8	10-d	•				4	1	5
10	10-е					3		3
I	11-a	(a)	2	1	42		4	49
J	11-b	<u>@</u>			8	13	3	24
11	11-c	•		6		2	2	10
12	11-d	(a)				2		2
к	12-a	@	2	1128	265	485	108	1988
L	12-ь	ā	1151	5	182	1	14	1353
N	12-c	ā			4	80	15	99
М	12-d	<u>a</u>			3	6		9
15	12-e	0				4	2	6
13	12-f					2		2
14	12-g	(a)			3			3
0	13-a	<i>a</i>	90	3	114	165	113	485
P	13-Ь	<i>a</i>					61	61
16	13-c	Ũ			4	2		6
0	14-a	(a)		224	7	73	114	418
R	14-Ь	<u>@</u>	1879		4		100	1983
18	14-c	<i>a</i>		60			5	65
17	14-d	<i>@</i>			8	24		32
S	15-a	@				24	42	66
19	15-Ь	-					19	19
Т	16-a	@		624	122	47	177	970
21	16-b	-				47		47
22	17-a				6	6		12
23	17-Ь					158	1	159
24	17-c					13		13
U	18-a	@			6	4	80	90
25	18-b						1	1
26	19-a						1	1

Appendix B (continued)

Old	New label	Rhombohedral	Enviror	Total no. of				
label			I	II	III	IV	Poly	point sets
31	20-a	@					13	13
30	20-ь				41			41
28	20-с				16			16
27	20-d				1			1
29	20-е			6				6
34	24-a			20				20
32	24-b				68			68
33	24-c			54				54
35	24-d				16			16